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I) DÉFINITION DU PROBLÈME 

Une instance du problème de la partition équilibrée est spécifiée par n entiers positifs, où n 
est le nombre d'éléments du tableau (qui sont indexés de 1 à n) : une valeur aᵢ pour chaque 
élément i. 
 
On note la somme totale S = a₁ + a₂ + … + aₙ et ⌊S/2⌋ la partie entière de S/2. 
 
La tâche de l’algorithme est de diviser l’ensemble des éléments en deux groupes de telle 
sorte que leurs sommes soient aussi proches que possible. Autrement dit, on cherche deux 
sous-ensembles disjoints P et P̅ formant une partition de {1, 2, …, n} : 

- P ⊆ {1, …, n}, 
- P̅ = {1, …, n} \ P, 

… tels que la différence de somme |∑ 𝑎𝑖 − 𝑖∈𝑃 ∑ 𝑎𝑖𝑖∉𝑃 | soit minimale. 
 
Le problème est donc de trouver un sous-ensemble P ⊆ {1, …, n} tel que ∑ 𝑎𝑖 ≤ ⌊S/2⌋𝑖∈𝑃  et 
que ∑ 𝑎𝑖𝑖∈𝑃  soit maximale. 
 

Problème : partition équilibrée d’un tableau d’entiers positifs 

Entrée : un tableau d’entiers positifs a₁, a₂, …, aₙ. 
 
Sortie : un sous-ensemble P ⊆ {1, …, n} tel que ∑ 𝑎𝑖 ≤ ⌊S/2⌋𝑖∈𝑃  et ∑ 𝑎𝑖𝑖∈𝑃  soit maximal, 
ou de manière équivalente tel que la différence |∑ 𝑎𝑖 − 𝑖∈𝑃 ∑ 𝑎𝑖𝑖∉𝑃 | soit minimale. 

 
Exemple : soit un problème de partition équilibrée avec les quatre entiers 
[3, 1, 4, 2]. La somme totale des objets vaut S = 3 + 1 + 4 + 2 = 10. La demi-
somme vaut ⌊S/2⌋ = 5. On cherche donc un sous-ensemble d’indices           
P ⊆ {1, 2, 3, 4} dont la somme est au plus 5 et aussi grande que possible. 
 
Parmi les partitions possibles, on a par exemple : 

- P = {3} : somme(P) = 4 ; P̅ = {1, 2, 4} : somme(P̅) = 3 + 1 + 2 = 6, différence = 2 
- P = {1, 2} : somme(P) = 3 + 1 = 4 ; P̅ = {3, 4} : somme(P̅) =  4 + 2 = 6, différence = 2 
- P = {1, 4} : somme(P) = 3 + 2 = 5 ; P̅ = {2, 3} : somme(P̅) = 1 + 4 = 5, différence = 0 

 
La meilleure partition ici est par exemple (P = {1, 4}, P̅ = {2, 3}), qui donne deux paquets de 
somme 5 chacun. La différence est nulle : on a une partition parfaitement équilibrée. 
 
Ce problème apparaît dans de nombreux domaines de la vie réelle : 

- Répartition de tâches entre deux machines : on dispose d’un ensemble de tâches, 
chacune avec une durée estimée (ou un coût CPU). On souhaite les répartir sur deux 
processeurs de façon à minimiser le temps de fin global. 

- Découpage d’un groupe en deux équipes équilibrées : on veut diviser des élèves ou 
des joueurs en deux équipes de niveaux aussi proches que possible, à partir de scores 
ou d’indices de performance. 

- Répartition de fichiers sur deux disques : chaque fichier a une taille ; on souhaite les 
placer sur deux disques de façon à équilibrer l’espace utilisé. 

 

Indice ai 

1 3 

2 1 

3 4 

4 2 
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Pour résoudre ce problème de manière exhaustive (par brute force), il faut : 
- Lister tous les sous-ensembles possibles P ⊆ {1, …, n} ; 
- Pour chacun : 

o calculer ∑ 𝑎𝑖𝑖∈𝑃 , 
o en déduire la somme de l’autre paquet ∑ 𝑎𝑖𝑖∉𝑃 = 𝑆 − ∑ 𝑎𝑖𝑖∈𝑃  
o calculer la différence |∑ 𝑎𝑖 − 𝑖∈𝑃 ∑ 𝑎𝑖𝑖∉𝑃 |  

- Garder le sous-ensemble P qui donne la plus petite différence. 
 
Pour n éléments, il y a 2ⁿ sous-ensembles possibles (chaque élément est soit dans P, soit 
dans P̅). Pour chaque sous-ensemble, calculer la somme coûte O(n) dans une version naïve 
(on additionne les éléments un par un). 
 
Au total, la complexité de cette méthode brute force est donc de O(n∙2n) en temps et de 
O(n) en espace mémoire pour stocker le sous-ensemble courant et la meilleure solution 
trouvée. 
 
C’est un algorithme exponentiel en n, impossible à utiliser sur de grandes instances. 

II) SOUS-STRUCTURE OPTIMALE ET RELATION DE RÉCURRENCE 

Nous pouvons déterminer une collection de sous-problèmes en raisonnant sur la structure 
des solutions optimales et en identifiant les différentes façons dont elles peuvent être 
construites à partir de solutions optimales de sous-problèmes plus petits. 
 

II.1. Sous-structure optimale 

Considérons une instance du problème de partition équilibrée avec les entiers positifs 
a₁, a₂, …, aₙ et la demi-somme ⌊S/2⌋. Supposons que quelqu’un nous donne, sur un plateau, 

une solution optimale P ⊆ {1, 2, …, n} de valeur totale 𝑆𝑚𝑎𝑥 = ∑ 𝑎𝑖𝑖∈𝑃 , avec Smax  ⌊S/2⌋.  
 
On peut se demander : soit P contient le dernier élément (l’élément n), soit elle ne le 
contient pas : 
 

Cas n°1 : n  P : supposons que la solution optimale P ne contient pas le dernier élément n. 

Dans ce cas, P est entièrement constitué d’indices dans {1, 2, …, n−1}. On peut la considérer 
comme une solution réalisable (valeur totale Smax ≤ ⌊S/2⌋) du problème plus petit ne 
comportant que les (n − 1) premiers éléments, avec la même contrainte de somme 
maximale Smax. 
 

Cas n°2 : n  P : supposons que la solution optimale P contient le dernier élément n. 

Ce cas ne peut se produire que si an ≤ Smax. Dans ce cas, si l’on retire l’élément n de P, on 
obtient le sous-ensemble P – {n}, qui est une solution à un sous-problème plus petit : il ne 
reste plus que les (n − 1) premiers éléments, et la somme maximale autorisée est réduite à 
Smax − aₙ. La valeur totale de P – {n} est alors (Smax − aₙ), et P – {n} est une solution optimale 
au sous-problème utilisant seulement les (n − 1) premiers éléments et une somme maximale 
Smax − aₙ. 
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II.2. Équation de récurrence sur les valeurs optimales 

Même si nous avons formulé le problème sous la forme d’une sous-structure optimale 
(maximiser une somme Smax ≤ ⌊S/2⌋), nous n’allons pas exploiter directement cette fonction 
de valeur optimale dans notre implémentation. 
 
En pratique, pour construire une partition équilibrée, il suffit de savoir, pour chaque préfixe 
d’éléments et chaque somme s, si cette somme est réalisable ou non. Nous allons donc 
raisonner sur la faisabilité des sommes et définir une valeur booléenne qui prendra la valeur 
« Vrai » s’il existe un sous-ensemble réalisant exactement une certaine somme et « Faux » si 
aucune combinaison ne permet d’atteindre cette somme. 
 
Notons Ti,s un booléen définissant : 

- Ti,s = « Vrai » s’il existe un sous-ensemble des i premiers éléments {1, …, i} dont la 
somme est exactement s ; 

- Ti,s = « Faux » sinon. 
 
Les cas de base sont : 

- T0,0 = « Vrai » (on peut faire la somme 0 en ne prenant aucun élément) ; 
- T0,s = « Faux » pour tout s > 0 (avec 0 élément, aucune somme positive n’est 

réalisable). 
 
Pour réaliser la somme s avec les i premiers éléments, il n’y a que deux solutions possibles : 

Cas n°1 : Ne pas prendre l’élément i (si s < ai). 
Dans ce cas si Ti-1,s = « Faux » alors Ti,s = « Faux » et Ti,s = « Vrai » dans les autres cas. 
 

Cas n°2 : Prendre l’élément i (si s  ai). 
Dans ce cas, pour pouvoir faire la somme s en prenant l’élément i, il faut pouvoir faire la 
somme (s - ai) avec les (i - 1) premiers éléments (et on ajoute ai) ou soit pouvoir faire la 
somme s avec les (i – 1) premiers éléments (et on n’ajoute pas ai).  

 
On obtient finalement la table de vérité suivante : 
 

s  ai (on prend l’élément i de valeur ai) Ti-1,s-ai Ti-1,s Ti,s 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 
On obtient l’équation logique : 

𝑇𝑖,𝑠 = 𝑇𝑖−1,𝑠 𝑂𝑈 (𝑠 ≥ 𝑎𝑖 𝐸𝑇 𝑇𝑖−1,𝑠−𝑎𝑖
) 
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Cela conduit à la relation de récurrence suivante : 
 

Récurrence sur la valeur de la solution optimale 

Pour tout i = 1, 2, …, n et tout s = 0, 1, 2, …, ⌊S/2⌋ : 
 

𝑇𝑖,𝑠 = { 
𝑇𝑖−1,𝑠   𝑎𝑖 > 𝑠

𝑇𝑖−1,𝑠 OU 𝑇𝑖−1,𝑠−𝑎𝑖
  𝑎𝑖 ≤ 𝑠

 

 
Avec les conditions de base : 
- T0,0 = « Vrai » 

- T0,s = « Faux » pour tout s  {1, …, ⌊S/2⌋} 

 
Une fois que l’on a calculé Ti,s pour tous les s de 0 à Smax = ⌊S/2⌋, on peut choisir la meilleure 
somme atteignable s* :  

𝑠∗ = 𝑚𝑎𝑥{𝑠 ∈ {0, . . . , ⌊𝑆/2⌋} | 𝑇𝑛,𝑠 = "𝑉𝑟𝑎𝑖"} 

Remarque : dans ce qui précède, nous avons supposé que toutes les valeurs Ti,s sont 
disponibles afin de choisir la meilleure somme atteignable s∗. Cette hypothèse est 
naturellement vérifiée dans l’approche bottom-up, qui remplit systématiquement toute la 
table Ti,s.  
 
En top-down avec mémoïsation, en revanche, seuls les sous-problèmes effectivement visités 
par la récursion sont calculés : un appel initial sur (n, ⌊S/2⌋) ne suffit donc pas à connaître 
toutes les valeurs Ti,s. Si la somme ⌊S/2⌋ n’est pas atteignable, il faut alors lancer des appels 
récursifs supplémentaires sur (n, s) pour s = ⌊S/2⌋−1, ⌊S/2⌋−2, … jusqu’à trouver une somme 
atteignable s∗. Ces appels calculent au passage, via la mémoïsation, toutes les entrées Ti,s 
nécessaires pour la reconstruction, sans pour autant remplir toute la table comme en 
bottom-up. 

III) SOUS-PROBLÈMES ET COMPLEXITÉ 

III.1. Définition des sous-problèmes 

L’étape suivante consiste à définir la collection de sous-problèmes pertinents et à les 
résoudre systématiquement en utilisant la relation de récurrence. 
 
Pour l’instant, nous nous concentrons sur le calcul de la table booléenne Ti,s qui indique si la 
somme s est réalisable avec les i premiers éléments. La reconstruction de la partition 
équilibrée sera faite plus tard à partir de ces informations. 
 
Pour le problème de la partition équilibrée, les sous-problèmes sont paramétrés par deux 
indices : i (longueur du préfixe des éléments disponibles) et s (somme cible de 0 à ⌊S/2⌋). En 
faisant varier ces deux paramètres sur toutes les valeurs pertinentes, nous obtenons la 
famille de sous-problèmes. 
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Sous-problèmes du partitionnement équilibré d’un tableau d’entiers positifs 

Calculer Ti,s, la valeur booléenne indiquant si la somme s est réalisable par un sous-
ensemble des i premiers éléments. 
 

(Pour chaque i = 0, 1, 2, …, n et s = 0, 1, 2, …, ⌊S/2⌋) 

 
Le plus grand sous-problème (i = n, s = ⌊S/2⌋) joue ici un rôle un peu particulier : on ne sait 
pas encore si la meilleure valeur de s sera exactement ⌊S/2⌋ ou un peu plus petite, mais c’est 
à partir de la ligne i = n de la table que l’on sélectionnera cette meilleure valeur. 
 
Comme toutes les valeurs ai des éléments sont des entiers positifs, les seules sommes qui 
peuvent apparaître sont les entiers compris entre 0 et ⌊S/2⌋. Comme on s’intéresse 
seulement à des sommes ≤ ⌊S/2⌋, nous pouvons limiter s à l’intervalle [0, ⌊S/2⌋]. 
 

III.2. Schéma de récursion 

On peut représenter les appels récursifs de la fonction Ti,s par un arbre de récursion. Dans ce 
schéma : 

- La notation [a1,a2,a3][3] signifie qu’on cherche à savoir si on peut réaliser la somme 3 
avec les trois premiers éléments [a1,a2,a3] ; 

- La notation T[3][3] = V signifie que la case correspondante dans la table booléenne 
vaut « Vrai » (la somme 3 est réalisable) ; 

- Dans les cas n°1 (branches de gauche), à partir des cas de base du bas, on remonte la 
valeur Ti-1,s ; 

- Dans les cas n°2 (branches de droite), on remonte la valeur Ti-1,s–aᵢ. 
- Les valeurs T[∙][∙] prennent le résultat du OU logique entre les deux valeurs 

remontées. 
 

 
Figure 1 : Schéma de récursion du problème 

https://www.informatique-f1.fr/dp/partition/ 
 

https://www.informatique-f1.fr/dp/partition/
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III.3. Complexité sans mémoïsation 

Chaque niveau de récursivité ne peut enlever qu'un seul élément. Il faut donc descendre 
jusqu'au niveau n pour avoir des cas de base. Tous les nœuds jusqu'au niveau (n – 1) sont 
donc des nœuds internes qui se ramifient encore, avec un facteur de branchement égal à 2 
(si on ne tient pas compte des cas où aᵢ > s). Le nombre de nœuds peut donc aller jusqu'à 2ⁿ 
au niveau n. Le maximum de nœuds est donc de 1 + 2 + 4 + … + 2ⁿ = 2ⁿ⁺¹ – 1. 
 
À chaque nœud de l'arbre de récursion, le travail local (hors appels récursifs) se fait en 
temps O(1) : on effectue seulement un nombre constant d'opérations (comparaisons, 
opération OU logique). Comme l'arbre de récursion est binaire et peut contenir jusqu'à O(2ⁿ) 
nœuds dans le pire des cas, le temps d'exécution de cet algorithme récursif sans 
mémoïsation est exponentiel, en O(2ⁿ). 
 
Remarquons qu'en pratique, l'algorithme top-down ne résout que les sous-problèmes qui 
sont réellement atteints en partant de l'état initial (n, ⌊S/2⌋) et en suivant la récurrence. 
Certains couples (i, s) ne sont jamais visités : par exemple parce que certaines sommes ne 
peuvent pas apparaître, ou parce que des branches sont coupées quand un élément est trop 
grand (aᵢ > s). 

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE 

IV.1. Algorithme top-down 

Étant donnés les sous-problèmes et la relation de récurrence, on peut mettre en place un 
algorithme top-down (avec mémoïsation) de programmation dynamique pour le problème 
de la partition équilibrée. 
 
Particularité de notre approche : l'algorithme effectue d'abord une recherche récursive pour 
savoir si la somme cible ⌊S/2⌋ est exactement atteignable. Si ce n'est pas le cas, il cherche 
récursivement la plus grande somme atteignable inférieure à ⌊S/2⌋, ce qui minimise la 
différence entre les deux parties de la partition. 
 
Cette approche est conforme au comportement top-down qui ne calcule que les sous-
problèmes réellement visités. Lors de la première passe (test de la cible ⌊S/2⌋), seuls les 
sous-problèmes sur le chemin de récurrence sont mémoïsés. Si la cible n'est pas atteinte, les 
passes suivantes bénéficient de la mémoïsation : beaucoup de sous-problèmes sont déjà 
calculés, ce qui accélère la recherche de la meilleure somme atteignable. 
 
L’algorithme est donné en page suivante. 
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Algorithme top-down pour le calcul des valeurs optimales 

 

Entrée : a[1, …, n] : valeurs des éléments 

Sortie : la plus grande somme atteignable s  ⌊S/2⌋ 

 
T := {}                                              # Dictionnaire de mémoïsation 
S := somme(a[1..n])                     # Somme totale 
cible := S // 2                                # Cible idéale (division entière) 

 
rec_opt_val_partition (i,s) : 

# i : nombre d’éléments considérés (les i premiers) 
# s : somme cible à atteindre 
 
# Utilise la mémoïsation 
Si (i, s) est dans T : 

Retourner T[(i, s)] 
 
# Cas de base 
Si s == 0 : 

T[(i, s)] := Vrai 
Retourner T[(i, s)] 

Si i == 0 : 
T[(i, s)] := Faux 
Retourner T[(i, s)] 

 
# Récursion cas n°1 : on ne prend pas l'élément i 
resultat := rec_opt_val_partition(i – 1, s) 
 
# Cas n°2 : on prend l'élément i (si possible) 
Si a[i] <= s : 

resultat := resultat OU  rec_opt_val_partition(i – 1, s – a[i]) 
 
# Sauvegarde et retourne la valeur optimale 
T[(i, s)] := resultat 
Retourner resultat 

 
# Appel principal 
Si rec_opt_val_partition(n, cible) == Vrai : 

Retourner cible 
Sinon : 

Pour s allant de (cible – 1) à 0 : 
Si rec_opt_val_partition(n, s) == Vrai : 

Retourner s 
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IV.2. Complexité de l’algorithme top-down 

Chaque sous-problème est défini par deux paramètres : le nombre d'éléments considérés (0 
à n) et la somme cible (0 à ⌊S/2⌋). Les états possibles sont donc les couples (i, s) avec 0 ≤ i ≤ n 
et 0 ≤ s ≤ ⌊S/2⌋. Le nombre maximal de sous-problèmes distincts est donc de (n+1)·(⌊S/2⌋+1) 
= O(n·S). 
 
Avec la mémoïsation, chaque couple (i, s) est calculé au plus une fois et les appels suivants 
sur les mêmes couples font uniquement un accès dans le dictionnaire des valeurs en O(1). 
 
Lors de la résolution d'un sous-problème (i, s) non mémorisé, l'algorithme effectue un travail 
local en O(1) (comparaisons, opération OU logique), ainsi qu'au plus deux appels récursifs 
vers des sous-problèmes comme (i−1, s) et (i−1, s−aᵢ). 
 
Comme chaque sous-problème est résolu au plus une fois, le nombre total d'appels « réels » 
est en O(n·S), et la complexité en temps est donc O(n·S). 
 
L'espace mémoire utilisé par le dictionnaire de mémoïsation est en O(n·S) et la profondeur 
de la pile d'appels récursifs est au maximum de n, soit O(n). Le total de l'espace mémoire est 
donc dominé par le dictionnaire et est de O(n·S). 
 

IV.3. Algorithme bottom-up 

L'algorithme bottom-up consiste à remplir progressivement la table des solutions des sous-
problèmes en utilisant la relation de récurrence, en partant des cas de base. 
 
Les tables construites par les algorithmes top-down et bottom-up sont données ci-dessous 
pour l'exemple [2,3,1] avec cible = 3 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV.4. Complexité de l’algorithme bottom-up 

À l'inverse de l'algorithme top-down, l'algorithme bottom-up parcourt systématiquement 
toute la table T[i, s] pour i = 0..n et s = 0..⌊S/2⌋, même pour des états qui ne seront jamais « 
utiles » pour la solution finale. Il effectue donc toujours exactement (n + 1)·(⌊S/2⌋ + 1) 
calculs, indépendamment de la structure de l'instance. 

T Somme 

0 1 2 3 

N
b

r 
d

’
é

lé
m

e
n

ts
 

0 V F F F 
1 V 

 
V F 

2 
  

V V 
3 

   
V 

 

T Somme 

0 1 2 3 

N
b

r 
d

’
é

lé
m

e
n

ts
 

0 V F F F 
1 V F V F 
2 V F V V 
3 V V V V 

 

Top-down Bottom-up 

Comment partitionner [2,3,1] pour avoir S = 3 ? 

Figure 2 : Tables des valeurs optimales top-down (gauche) et bottom-up (droite) 
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On a donc la même complexité asymptotique O(n·S) pour les deux approches, mais en 
pratique le top-down peut faire moins de travail effectif sur certaines instances, alors que le 
bottom-up remplit la table de manière uniforme, quitte à calculer des sous-problèmes 
inutiles. 
 

Algorithme bottom-up pour le calcul des valeurs optimales 

Entrée : a[1, …, n] : valeurs des éléments 

Sortie : la plus grande somme atteignable s  ⌊S/2⌋ 
 
T := {}                                              # Dictionnaire de mémoïsation 
S := somme(a[1..n])                     # Somme totale 
cible := S // 2                                # Cible idéale (division entière) 
 
opt_val_partition (a) : 

# Cas de base : avec 0 élément, seule la somme 0 est atteignable 
T[(0, 0)] := Vrai 
Pour s allant de 1 à cible : 

T[(0, s)] := Faux 
 

# Résout l'ensemble des sous-problèmes 
Pour i allant de 1 à n : 

Pour s allant de 0 à cible : 
# Utilise l'équation de récurrence 
Si a[i] > s : 

T[(i, s)] := T[(i-1, s)] 
Sinon : 

T[(i, s)] := T[(i-1, s)] OU T[(i-1, s-a[i])] 
 

# Cherche la plus grande somme atteignable 
Pour s allant de cible à 0 (par pas de -1) : 

Si T[(n, s)] == Vrai : 
Retourner s 

V) ALGORITHME DE RECONSTRUCTION 

V.1. Principe et algorithme de reconstruction 

On peut reconstruire une solution optimale en retraçant le chemin dans le tableau T une fois 
rempli. 
 
En partant du plus grand sous-problème, l'algorithme de reconstruction vérifie quel cas de la 
récurrence a été utilisé pour calculer T[n][s*] (où s* est la meilleure somme atteignable 
trouvée) : 

- Si s  ai et T[i-1][s-ai] == Vrai, alors c’est le cas n°2 : on prend l’élément i et on 
reprend la construction à partir de l’entrée T[i-1][s-ai] ; 

- Sinon, c'est le cas n°1 : on ne prend pas l'élément i et on reprend la reconstruction à 
partir de l'entrée T[i-1][s] ; 
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L’algorithme de reconstruction est le suivant : 
 

Algorithme de reconstruction (méthode 1) 
 

Entrée : a[1, …, n] : valeurs des éléments 
               T : dictionnaire des booléens 
               s_opt : somme optimale atteinte 

Sortie : P : solution optimale du problème (indices des éléments de la première partie) 
 
Reconstruction (a, T, s_opt) : 

P := ∅                 # Éléments de la solution 
s := s_opt          # Somme restante à atteindre 
 
Pour i allant de n à 1 : 

# On vérifie si on peut prendre l’élément i (cas n°2) 
Si s >= a[i] ET T[(i-1, s-a[i])] == Vrai : 

P := P  {i} 
s := s - a[i] 

# Sinon : cas n°1, on n’inclut pas i, s reste inchangé 
 

Retourner P 

 
La figure ci-dessous illustre ce principe de reconstruction : 

 
Figure 3 : Principe de reconstruction de la solution optimale (méthode 1) 

L'algorithme de reconstruction présenté ci-dessus privilégie le cas n°2 (prendre l'élément) 
lorsque les deux choix sont possibles. On pourrait tout aussi bien privilégier le cas n°1 (ne 
pas prendre l'élément) en testant d'abord si T[i-1][s] est Vrai : si c'est le cas, on passe 
directement à l'élément suivant sans modifier la somme cible ; sinon, on prend l'élément i.  
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Les deux approches sont équivalentes en termes de complexité et produisent des partitions 
optimales, mais elles peuvent conduire à des solutions différentes lorsque plusieurs 
partitions optimales existent. 
 

Algorithme de reconstruction (méthode 2) 
 

Entrée : a[1, …, n] : valeurs des éléments 
               T : dictionnaire des booléens 
               s_opt : somme optimale atteinte 

Sortie : P : solution optimale du problème (indices des éléments de la première partie) 
 
Reconstruction (a, T, s_opt) : 

P := ∅                 # Éléments de la solution 
s := s_opt          # Somme restante à atteindre 
 
Pour i allant de n à 1 : 

# On vérifie d'abord si on peut NE PAS prendre l'élément i (cas n°1) 
Si T[(i-1, s)] == Vrai : 

# Cas n°1 : on ne prend pas l'élément i 
# (on ne fait rien, on passe à i-1 avec la même somme s) 
Continuer 

Sinon : 
# Cas n°2 : on doit prendre l'élément i 
P := P ∪ {i} 
s := s - a[i] 

Retourner P 

 
La figure ci-dessous illustre ce principe de reconstruction : 

 
Figure 4 : Principe de reconstruction de la solution optimale (méthode 2) 
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V.2. Complexité finale 

L'étape de reconstruction s'exécute en temps O(n) (avec un travail en O(1) par itération de la 
boucle principale), ce qui est beaucoup plus rapide que le temps O(n·S) nécessaire pour 
remplir le tableau des booléens. 
 
Le problème de la partition équilibrée peut donc être résolu par programmation dynamique 
en temps O(n·S). 
 


