COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

COURS : PROGRAMMATION DYNAMIQUE
= PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS =

Notre deuxieme étude de cas concerne le probléeme de partitionnement d’un tableau
d’entiers positifs. Nous allons construire la solution du probleme par programmation
dynamique.

1) DEFINITION DU PROBLEMIEcoueiiiuenitiieisssetsssnestssssessssssessssssesssssssnsssssssssssasnsssssenens 2
1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCEcccceereeeeruecneeeesnesnenns 3
[1.1. SOUS-StruCture Optimale.........uiiiiieeee e e e e e e e e e e e enees 3
11.2. Equation de récurrence sur les valeurs optimales............ccovevvueeeeeeeeeeeeeeeeeeeeeseeseneeans 4
111) SOUS-PROBLEMES ET COMPLEXITEcceevueirteereeesessessessessessesssssessssssnsssesssssessesssnns 5
[11.1. Définition des SOUS-ProbIEMEScceeviiiiiiiie e 5
[11.2. SChEM@ & FECUISION ...ttt ettt s e e st e e s e s sareeesaneeeas 6
[11.3. Complexité sans MEMOTSATIONueiieiiiiieiiiiee e e e e e 7
IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUEcccovvummmnrreeiiiiiiisnnnnnneeessnssssnnnns 7
IV.1. AlgOrithme tOP-QOWN ... e e e e e e e e e e e e ra e e e e e e e e eennnes 7
IV.2. Complexité de I'algorithme top-dOWNc.uuiiiiiiiiiece e e 9
IV.3. Algorithme BOttOM-UP .o e e e e e e e e e e e e eannes 9
IV.4. Complexité de I'algorithme bottoOmM-UPceeviiiiieiee e 9
V) ALGORITHME DE RECONSTRUCTIONcccoiiuunnreeiiiiiiiiinnnreeeesssssssssssssneesssssssssssssnssens 10
V.1. Principe et algorithme de reCoNStrUCtioNc.cuvveveeieeiieicireeee e 10
V.2, COMPIEXIEE FINAIE coeeei et e e e e e e e ear e e e e e e e e e e nanneeees 13

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

1) DEFINITION DU PROBLEME

Une instance du probléme de la partition équilibrée est spécifiée par n entiers positifs, ou n
est le nombre d'éléments du tableau (qui sont indexés de 1 a n) : une valeur a; pour chague
élément i.

On note la somme totale S = a; + a, + ... + a, et |S/2] |a partie entiére de S/2.

La tache de I'algorithme est de diviser 'ensemble des éléments en deux groupes de telle
sorte que leurs sommes soient aussi proches que possible. Autrement dit, on cherche deux
sous-ensembles disjoints P et P formant une partition de {1, 2, ..., n}:

- Pc{1,..n},

- P={1,..,n}\P,
... tels que la différence de somme |} ;cp a; — Xigp a;| soit minimale.

Le probléme est donc de trouver un sous-ensemble P € {1, ..., n} tel que X;ep a; < |S/2] et
que Y ;ep a; soit maximale.

Probléme : partition équilibrée d’un tableau d’entiers positifs

Entrée : un tableau d’entiers positifs a4, ay, ..., an.

Sortie : un sous-ensemble P S {1, ..., n} tel que X;cp a; < |S/2] et X;ep a; soit maximal,
ou de maniére équivalente tel que la différence |Y;ep a; — Xigp a;| soit minimale.

Exemple : soit un probléme de partition équilibrée avec les quatre entiers Indice | a
[3,1, 4, 2]. La somme totale des objets vautS=3+ 1+ 4+ 2 =10. La demi- 1 3
somme vaut [S/2]| = 5. On cherche donc un sous-ensemble d’indices 2 1
P c{1, 2, 3, 4} dont la somme est au plus 5 et aussi grande que possible. Z 3

Parmi les partitions possibles, on a par exemple :
- P={3}:somme(P)=4;P={1, 2, 4}: somme(P) =3 +1 + 2 =6, différence = 2
- P={1,2}:somme(P)=3+1=4;P={3,4}:somme(P) = 4 + 2 =6, différence = 2
- P={1,4}:somme(P)=3+2=5;P={2,3}:somme(P) =1+4=35, différence =0

La meilleure partition ici est par exemple (P = {1, 4}, P = {2, 3}), qui donne deux paquets de
somme 5 chacun. La différence est nulle : on a une partition parfaitement équilibrée.

Ce probleme apparait dans de nombreux domaines de la vie réelle :

- Répartition de taches entre deux machines : on dispose d’'un ensemble de taches,
chacune avec une durée estimée (ou un colt CPU). On souhaite les répartir sur deux
processeurs de facon a minimiser le temps de fin global.

- Découpage d’un groupe en deux équipes équilibrées : on veut diviser des éléves ou
des joueurs en deux équipes de niveaux aussi proches que possible, a partir de scores
ou d’indices de performance.

- Répartition de fichiers sur deux disques : chaque fichier a une taille ; on souhaite les
placer sur deux disques de facon a équilibrer I'espace utilisé.

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

Pour résoudre ce probleme de maniére exhaustive (par brute force), il faut :
- Lister tous les sous-ensembles possibles P € {1, ..., n};
- Pourchacun:
o calculer Y;epa;,
o en déduire la somme de I'autre paquet }iepa; = S — Yiep @i
o calculer la différence |Yiep a; — Digp ail
- Garder le sous-ensemble P qui donne la plus petite différence.

Pour n éléments, il y a 2" sous-ensembles possibles (chaque élément est soit dans P, soit
dans P). Pour chaque sous-ensemble, calculer la somme colite O(n) dans une version naive
(on additionne les éléments un par un).

Au total, la complexité de cette méthode brute force est donc de O(n-2") en temps et de
O(n) en espace mémoire pour stocker le sous-ensemble courant et la meilleure solution
trouvée.

C’est un algorithme exponentiel en n, impossible a utiliser sur de grandes instances.

1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCE

Nous pouvons déterminer une collection de sous-problemes en raisonnant sur la structure
des solutions optimales et en identifiant les différentes fagons dont elles peuvent étre
construites a partir de solutions optimales de sous-problemes plus petits.

Il.1. Sous-structure optimale

Considérons une instance du probléme de partition équilibrée avec les entiers positifs
a1, Az, ..., an et la demi-somme |S/2]. Supposons que quelgu’un nous donne, sur un plateau,
une solution optimale P € {1, 2, ..., n} de valeur totale S, = X.;ep @i, aveC Smax < |S/2].

On peut se demander : soit P contient le dernier élément (I’élément n), soit elle ne le
contient pas :

Cas n°1:n ¢ P : supposons que la solution optimale P ne contient pas le dernier élément n.

Dans ce cas, P est entierement constitué d’indices dans {1, 2, ..., n—-1}. On peut la considérer
comme une solution réalisable (valeur totale Smax < |S/2]) du probléme plus petit ne
comportant que les (n — 1) premiers éléments, avec la méme contrainte de somme
maximale Smax.

Cas n°2 :n € P : supposons que la solution optimale P contient le dernier élément n.

Ce cas ne peut se produire que si an < Smax. Dans ce cas, si I'on retire I’élément n de P, on
obtient le sous-ensemble P — {n}, qui est une solution a un sous-probléme plus petit : il ne
reste plus que les (n - 1) premiers éléments, et la somme maximale autorisée est réduite a
Smax — an. La valeur totale de P — {n} est alors (Smax — an), et P — {n} est une solution optimale
au sous-probléeme utilisant seulement les (n — 1) premiers éléments et une somme maximale
Smax - an-

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

I.2. Equation de récurrence sur les valeurs optimales

Méme si nous avons formulé le probleme sous la forme d’une sous-structure optimale
(maximiser une somme Smax < |S/2]), nous n’allons pas exploiter directement cette fonction
de valeur optimale dans notre implémentation.

En pratique, pour construire une partition équilibrée, il suffit de savoir, pour chaque préfixe
d’éléments et chaque somme s, si cette somme est réalisable ou non. Nous allons donc
raisonner sur la faisabilité des sommes et définir une valeur booléenne qui prendra la valeur
« Vrai » s’il existe un sous-ensemble réalisant exactement une certaine somme et « Faux » si
aucune combinaison ne permet d’atteindre cette somme.

Notons Tis un booléen définissant :
- Tis =« Vrai » s’il existe un sous-ensemble des i premiers éléments {1, ..., i} dont la
somme est exactement s ;
- Tis =« Faux » sinon.

Les cas de base sont :
- To, =« Vrai » (on peut faire la somme 0 en ne prenant aucun élément) ;
- To,s =« Faux » pour tout s > 0 (avec 0 élément, aucune somme positive n’est
réalisable).

Pour réaliser la somme s avec les i premiers éléments, il n’y a que deux solutions possibles :
Cas n°1 : Ne pas prendre I'élément i (si s < aj).
Dans ce cas si Ti.1,s = « Faux » alors Tis = « Faux » et Tis = « Vrai » dans les autres cas.

Cas n°2 : Prendre I'élément i (si s > aj).

Dans ce cas, pour pouvoir faire la somme s en prenant I'élément i, il faut pouvoir faire la
somme (s - ai) avec les (i - 1) premiers éléments (et on ajoute aj) ou soit pouvoir faire la
somme s avec les (i — 1) premiers éléments (et on n’ajoute pas aj).

On obtient finalement la table de vérité suivante :

s > ai (on prend I'élément i de valeur aj) Ti-1,s-ai Ti-a,s

=

0 0

RlRrRR|OO|lO|O|®D

S ===
R OR|O|Rr|O|F
R|RrR|OR|O|R|O

On obtient I'’équation logique :

Tis =Ti1,s0U (s 2 a; ET Ty_15q,)

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

Cela conduit a la relation de récurrence suivante :

Récurrence sur la valeur de la solution optimale

Pourtouti=1,2,.., nettouts=0,1,2,..,|5/2]:

_ {Ti_l's a;>s
bs Ti—1s ou Ti—l,s—ai a;<s

Avec les conditions de base :
- Too0=«Vrai»
- Tos=« Faux » pour tout s € {1, ..., |S/2]}

Une fois que I'on a calculé Tis pour tous les s de 0 a Smax = |S/2], on peut choisir la meilleure
somme atteignable s* :

s* = max{s €1{0,...,1S/2]} | Tys = "Vrai"}

Remarque : dans ce qui précede, nous avons supposé que toutes les valeurs Tis sont
disponibles afin de choisir la meilleure somme atteignable s*. Cette hypothése est
naturellement vérifiée dans I'approche bottom-up, qui remplit systématiquement toute la
table Tis.

En top-down avec mémoisation, en revanche, seuls les sous-problémes effectivement visités
par la récursion sont calculés : un appel initial sur (n, |S/2]) ne suffit donc pas a connaitre
toutes les valeurs Tis. Si la somme |S/2] n’est pas atteignable, il faut alors lancer des appels
récursifs supplémentaires sur (n, s) pour s = |S/2|-1, |S/2]-2, ... jusqu’a trouver une somme
atteignable s*. Ces appels calculent au passage, via la mémoisation, toutes les entrées Tis
nécessaires pour la reconstruction, sans pour autant remplir toute la table comme en
bottom-up.

I1) SOUS-PROBLEMES ET COMPLEXITE

lll.1. Définition des sous-problemes

L’étape suivante consiste a définir la collection de sous-problémes pertinents et a les
résoudre systématiquement en utilisant la relation de récurrence.

Pour I'instant, nous nous concentrons sur le calcul de la table booléenne Tis qui indique si la
somme s est réalisable avec les i premiers éléments. La reconstruction de la partition
équilibrée sera faite plus tard a partir de ces informations.

Pour le probléme de la partition équilibrée, les sous-problémes sont paramétrés par deux
indices : i (longueur du préfixe des éléments disponibles) et s (somme cible de 0 a [S/2]). En
faisant varier ces deux parameétres sur toutes les valeurs pertinentes, nous obtenons la
famille de sous-problémes.

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

Sous-problémes du partitionnement équilibré d’un tableau d’entiers positifs

Calculer Tis, la valeur booléenne indiquant si la somme s est réalisable par un sous-
ensemble des i premiers éléments.

(Pour chaquei=0,1,2,..,nets=0,1,2,..,[S/2])

Le plus grand sous-probleme (i = n, s = |S/2]) joue ici un réle un peu particulier : on ne sait
pas encore si la meilleure valeur de s sera exactement |S/2| ou un peu plus petite, mais c’est
a partir de la ligne i = n de la table que I'on sélectionnera cette meilleure valeur.

Comme toutes les valeurs aj des éléments sont des entiers positifs, les seules sommes qui
peuvent apparaitre sont les entiers compris entre 0 et |S/2|]. Comme on s’intéresse
seulement a des sommes < |S/2], nous pouvons limiter s a I'intervalle [0, |S/2]].

111.2. Schéma de récursion

On peut représenter les appels récursifs de la fonction Tis par un arbre de récursion. Dans ce
schéma :
- La notation [a1,a2,a3][3] signifie qu’on cherche a savoir si on peut réaliser la somme 3
avec les trois premiers éléments [a1,a2,a3] ;
La notation T[3][3] = V signifie que la case correspondante dans la table booléenne
vaut « Vrai » (la somme 3 est réalisable) ;
- Dans les cas n°1 (branches de gauche), a partir des cas de base du bas, on remonte la
valeur Ti.1s;
- Dans les cas n°2 (branches de droite), on remonte la valeur Ti.1,s-a.
Les valeurs T[-][-] prennent le résultat du OU logique entre les deux valeurs
remontées.

https://www.informatique-f1.fr/dp/partition/

Comment partitionner [2,3,1] pour avoir une cible=3 ?

BBy C some
[allaZI 3][3] \\ 1 2 3
Vv
Casn°2

0
Cas @4 0 V F F |F
\\a3€P c
£ 1 Vv vV F
@
5 2 VAR,
TR2IBI- >
[a,,a 2][3] [31, 2][2] zZ E v

T[1][3]=F 1][0 T[1][2]= T[l]
(a,]3] [61][0] [31][2]
/\ (sntuatlon Impossible)
T[O][3]=F T[O][1]=F F

T[0][3]= T[O][1]=F T[0][2]=F T[0] O] v
[®][3] [D][1] [D112] [2][0]

Figure 1 : Schéma de récursion du probléeme

https://www.informatique-f1.fr/dp/partition/

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

l1l.3. Complexité sans mémoisation

Chaque niveau de récursivité ne peut enlever qu'un seul élément. Il faut donc descendre
jusgu'au niveau n pour avoir des cas de base. Tous les nceuds jusqu'au niveau (n — 1) sont
donc des nceuds internes qui se ramifient encore, avec un facteur de branchement égal a 2
(si on ne tient pas compte des cas ou a; > s). Le nombre de nceuds peut donc aller jusqu'a 2"
au niveau n. Le maximum de nceuds estdoncde 1+2+ 4+ .. +2"=2""—-1,

A chaque noeud de I'arbre de récursion, le travail local (hors appels récursifs) se fait en
temps O(1) : on effectue seulement un nombre constant d'opérations (comparaisons,
opération OU logique). Comme I'arbre de récursion est binaire et peut contenir jusqu'a O(2")
nceuds dans le pire des cas, le temps d'exécution de cet algorithme récursif sans
mémoisation est exponentiel, en O(2").

Remarquons qu'en pratique, I'algorithme top-down ne résout que les sous-problémes qui
sont réellement atteints en partant de I'état initial (n, |S/2]) et en suivant la récurrence.
Certains couples (i, s) ne sont jamais visités : par exemple parce que certaines sommes ne
peuvent pas apparaitre, ou parce que des branches sont coupées quand un élément est trop
grand (a; > s).

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE
IV.1. Algorithme top-down

Etant donnés les sous-problémes et la relation de récurrence, on peut mettre en place un
algorithme top-down (avec mémoisation) de programmation dynamique pour le probleme
de la partition équilibrée.

Particularité de notre approche : 'algorithme effectue d'abord une recherche récursive pour
savoir si la somme cible |[S/2] est exactement atteignable. Si ce n'est pas le cas, il cherche
récursivement la plus grande somme atteignable inférieure a |S/2], ce qui minimise la
différence entre les deux parties de la partition.

Cette approche est conforme au comportement top-down qui ne calcule que les sous-
problemes réellement visités. Lors de la premiére passe (test de la cible |S/2]), seuls les
sous-problémes sur le chemin de récurrence sont mémoisés. Si la cible n'est pas atteinte, les
passes suivantes bénéficient de la mémoisation : beaucoup de sous-problémes sont déja
calculés, ce qui accélére la recherche de la meilleure somme atteignable.

L'algorithme est donné en page suivante.

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

Algorithme top-down pour le calcul des valeurs optimales

Entrée : a[1, ..., n] : valeurs des éléments

Sortie : |a plus grande somme atteignable s < [S/2]

T:={} # Dictionnaire de mémoisation
S :=somme(a[1..n]) # Somme totale
cible:=S//2 # Cible idéale (division entiére)

rec_opt_val_partition (i,s) :
#i: nombre d’éléments considérés (les i premiers)
#s:somme cible a atteindre

Utilise la mémoisation
Si(i,s)estdans T:
| Retourner T[(i, s)]

Cas de base

Sis==0:

| TI(i, s)] := Vrai
Retourner T[(i, s)]

Sii==0:

| T[(i, s)] := Faux
Retourner T[(i, s)]

Récursion cas n°1 : on ne prend pas I'élément i
resultat := rec_opt_val_partition(i— 1, s)

Cas n°2 : on prend I'élément i (si possible)
Siali]<=s:
| resultat := resultat OU rec_opt_val_partition(i — 1, s — a[i])

Sauvegarde et retourne la valeur optimale
TI(i, s)] := resultat
Retourner resultat

Appel principal
Si rec_opt_val_partition(n, cible) == Vrai :
| Retourner cible
Sinon :
Pour s allant de (cible—1)a 0 :
Sirec_opt_val_partition(n, s) == Vrai :
I Retourners

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

IV.2. Complexité de I'algorithme top-down

Chaque sous-probléme est défini par deux parametres : le nombre d'éléments considérés (0
an) et lasomme cible (0 a |S/2]). Les états possibles sont donc les couples (i, s) avec0<i<n
et 0 <s < |S/2]. Le nombre maximal de sous-problémes distincts est donc de (n+1)-(|S/2]+1)
= 0(n-S).

Avec la mémoisation, chaque couple (i, s) est calculé au plus une fois et les appels suivants
sur les mémes couples font uniquement un acces dans le dictionnaire des valeurs en O(1).

Lors de la résolution d'un sous-probleme (i, s) non mémorisé, |'algorithme effectue un travail
local en O(1) (comparaisons, opération OU logique), ainsi qu'au plus deux appels récursifs
vers des sous-probléemes comme (i-1, s) et (i-1, s—a;).

Comme chaque sous-probléme est résolu au plus une fois, le nombre total d'appels « réels »
est en O(n-S), et la complexité en temps est donc O(n-S).

L'espace mémoire utilisé par le dictionnaire de mémoisation est en O(n-S) et la profondeur
de la pile d'appels récursifs est au maximum de n, soit O(n). Le total de I'espace mémaoire est
donc dominé par le dictionnaire et est de O(n-S).

IV.3. Algorithme bottom-up

L'algorithme bottom-up consiste a remplir progressivement la table des solutions des sous-
problémes en utilisant la relation de récurrence, en partant des cas de base.

Les tables construites par les algorithmes top-down et bottom-up sont données ci-dessous
pour I'exemple [2,3,1] avec cible =3 :

Comment partitionner [2,3,1] pour avoirS=3?
Top-down Bottom-up

£ 0 V F F F £ 0 V F F F
@ @
E 1 v vV F E 1. v F v ¢
- e
5 2 vV Vv 5 2 V F V vV
S s
2 3 v Z 3 V V Vv v

Figure 2 : Tables des valeurs optimales top-down (gauche) et bottom-up (droite)

IV.4. Complexité de I'algorithme bottom-up

A l'inverse de I'algorithme top-down, I'algorithme bottom-up parcourt systématiquement
toute la table T[i, s] pouri=0..n et s =0..|S/2|, méme pour des états qui ne seront jamais «
utiles » pour la solution finale. Il effectue donc toujours exactement (n + 1)-(|S/2] + 1)
calculs, indépendamment de la structure de l'instance.

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

On a donc la méme complexité asymptotique O(n-S) pour les deux approches, mais en
pratique le top-down peut faire moins de travail effectif sur certaines instances, alors que le
bottom-up remplit la table de maniere uniforme, quitte a calculer des sous-probléemes
inutiles.

Algorithme bottom-up pour le calcul des valeurs optimales

Entrée : a[1, ..., n] : valeurs des éléments
Sortie : la plus grande somme atteignable s < |S/2]

T:={} # Dictionnaire de mémoisation
S :=somme(a[1..n]) # Somme totale
cible:=S//2 # Cible idéale (division entiere)

opt_val_partition (a) :
Cas de base : avec 0 élément, seule la somme 0 est atteignable
T[(O, 0)] := Vrai
Pour s allant de 1 a cible :
I T[(O, s)] := Faux

Résout I'ensemble des sous-probléemes
Pouriallantdelan:
Pour s allant de 0 a cible :
Utilise I'équation de récurrence
Siafi]>s:
I TIG,)1 :=TI(-1, 5)]
Sinon :
| TIG, s)] :=TI(i-1, s)] OU T[(i-1, s-a[i])]

Cherche la plus grande somme atteignable
Pour s allant de cible a O (par pas de -1) :
SiT[(n, s)] == Vrai :
| Retourners

V) ALGORITHME DE RECONSTRUCTION

V.1. Principe et algorithme de reconstruction

On peut reconstruire une solution optimale en retracant le chemin dans le tableau T une fois
rempli.

En partant du plus grand sous-probléme, |'algorithme de reconstruction vérifie quel cas de la
récurrence a été utilisé pour calculer T[n][s*] (ou s* est la meilleure somme atteignable
trouvée) :
- Sis>ajet T[i-1][s-ai] == Vrai, alors c’est le cas n°2 : on prend I'élément i et on
reprend la construction a partir de I'entrée T[i-1][s-ai] ;
- Sinon, c'est le cas n°1 : on ne prend pas |'élément i et on reprend la reconstruction a
partir de I'entrée T[i-1][s] ;

10

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

L'algorithme de reconstruction est le suivant :

Algorithme de reconstruction (méthode 1)

Entrée : a[1, ..., n] : valeurs des éléments
T : dictionnaire des booléens
s_opt : somme optimale atteinte

Sortie : P : solution optimale du probléme (indices des éléments de la premiére partie)

Reconstruction (a, T, s_opt) :
P:=0 # Eléments de la solution
s:=s_opt # Somme restante a atteindre

Pouriallantdenal:
On vérifie si on peut prendre I'élément i (cas n°2)
Si s >=al[i] ET T[(i-1, s-ali])] == Vrai :
P:=Pu/{i}
s:=s-alil
Sinon : cas n°1, on n’inclut pas i, s reste inchangé

Retourner P

La figure ci-dessous illustre ce principe de reconstruction :
T[3][3] = V : on peut faire la somme s = 3 avec

Comment partitionner [2,3,1] pour avoir une cible=3? les 3 premiers éléments.
OnpartdeP=@;s=3

///" P={}
)

"’TBJB]:V\‘\ s>a, (=1) et T[2][2] == v‘:)

= Onprend a; etonenléevea;=las(=>s=2)
\[ay,a5,8;5](3] 1
. Prd P ={a,}

s<a,(=3):
Pt = On ne prend pas a,, on laisse s = 2
T213)=v ST P {a,} ’
[a,.3,](3] S aasll2] L l

AN) .
F 7 \\V v N s>a, (=2) et T[O][0] ==V :
/ N Y 4 /_\(‘. = On prend a,, on enléve al=2 as (= s =0)

T[B1=F T[a][0]=V TRV, T[1] P={a; a,}
[a,]13] [a,][0] N fa2] [p4f1-1] l

VRN S (situation Impossible) .
T[0][3]=F/ N\ T[0][1]=F F v n=1:Fin
TOIBI=F TIOJ[L=F TO2=F TIOJ0]=V
[21(3] [2111] [@1[2] [2][0]

Figure 3 : Principe de reconstruction de la solution optimale (méthode 1)

L'algorithme de reconstruction présenté ci-dessus privilégie le cas n°2 (prendre I'élément)
lorsque les deux choix sont possibles. On pourrait tout aussi bien privilégier le cas n°1 (ne
pas prendre I'élément) en testant d'abord si T[i-1][s] est Vrai : si c'est le cas, on passe
directement a I'élément suivant sans modifier la somme cible ; sinon, on prend I'élément i.

11

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

Les deux approches sont équivalentes en termes de complexité et produisent des partitions
optimales, mais elles peuvent conduire a des solutions différentes lorsque plusieurs

partitions optimales existent.

Entrée : a[1, ..., n] : valeurs des éléments
T : dictionnaire des booléens
s_opt : somme optimale atteinte

Reconstruction (a, T, s_opt) :
P:=0 # Eléments de la solution

Pouriallantdenal:

Si T[(i-1, s)] == Vrai :
Continuer
Sinon :

P:=P Ui}

s:=s-alil]
Retourner P

Algorithme de reconstruction (méthode 2)

Sortie : P : solution optimale du probléme (indices des éléments de la premiére partie)

s:=s_opt # Somme restante a atteindre
On vérifie d'abord si on peut NE PAS prendre I'élément i (cas n°1)
Cas n°1: on ne prend pas I'élément i

(on ne fait rien, on passe a i-1 avec la méme somme s)

Cas n°2 : on doit prendre I'élément i

La figure ci-dessous illustre ce principe de reconstruction :

Comment partitionner [2,3,1] pour avoir une cible =3

NICHEREHENRN

S TEIBEY N ﬁ—-’

T[3][3] = V : on peut faire la somme s = 3 avec
les 3 premiers éléments.
OnpartdeP=;s=3

P={}

|

T[2][3] == V:
= On ne prend pas a,, on laisses=3

P={}

T[][3]==F:
= On prend 'élément a,, on enléve a,=3 as (= s=0)

P= {az}

T[O][0] == V:
= On ne prend pas a,, on laisse s = 0

P= {az}

|

n=1:Fin

.~ - v
T .. Casn®2:
S a;eP
""IT[_Z]_[3}‘:\T’\\‘ T2][2)=V
 fanali3l L (a,,2,](2]
F s \ \ /’4’
/ -
/ P, Yy /
TIEI=F [TI0=V Y, T[][2]=v
[a,][3] ‘\[_31][0]’/’ [a,][2]
) a . (situation Impossible)
T[O][3]=F / N TI0][1]=F F/ NV
T[O][3]=F T[O][1]=F T[O][2]=F T[0][0]=V
[21[3] [D][1] [2][2] [Z][0]

Figure 4 : Principe de reconstruction de la solution optimale (méthode 2)

12

COURS : PROGRAMMATION DYNAMIQUE — PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS

V.2. Complexité finale

L'étape de reconstruction s'exécute en temps O(n) (avec un travail en O(1) par itération de la

boucle principale), ce qui est beaucoup plus rapide que le temps O(n-S) nécessaire pour
remplir le tableau des booléens.

Le probléme de la partition équilibrée peut donc étre résolu par programmation dynamique
en temps O(n-S).

13

